DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Enterprise AI Trend Report: Gain insights on ethical AI, MLOps, generative AI, large language models, and much more.

2024 Cloud survey: Share your insights on microservices, containers, K8s, CI/CD, and DevOps (+ enter a $750 raffle!) for our Trend Reports.

PostgreSQL: Learn about the open-source RDBMS' advanced capabilities, core components, common commands and functions, and general DBA tasks.

AI Automation Essentials. Check out the latest Refcard on all things AI automation, including model training, data security, and more.

Related

  • Unleashing the Power of GPT: A Comprehensive Guide To Implementing OpenAI’s GPT in ReactJS
  • AI Code Intentions
  • Unleashing Conversational Magic: Integrating ChatGPT With React.js and Node.js
  • Building a Dynamic Chat Application: Setting up ChatGPT in FastAPI and Displaying Conversations in ReactJS

Trending

  • Code Complexity in Practice
  • The Impact of Biometric Authentication on User Privacy and the Role of Blockchain in Preserving Secure Data
  • Types of Data Breaches in Today’s World
  • Building Safe AI: A Comprehensive Guide to Bias Mitigation, Inclusive Datasets, and Ethical Considerations
  1. DZone
  2. Data Engineering
  3. AI/ML
  4. AI and Rules for Agile Microservices in Minutes

AI and Rules for Agile Microservices in Minutes

Create a project instantly using AI and API/Logic Automation. Customize later with Python, Rules, and Flask, which is open-source.

By 
Val Huber user avatar
Val Huber
·
Feb. 01, 24 · Tutorial
Like (10)
Save
Tweet
Share
4.4K Views

Join the DZone community and get the full member experience.

Join For Free

Here's how to use AI and API Logic Server to create complete running systems in minutes:

  1. Use ChatGPT for Schema Automation: create a database schema from natural language.
  2. Use Open Source API Logic Server: create working software with one command.
    • App Automation: a multi-page, multi-table admin app.
    • API Automation: A JSON: API, crud for each table, with filtering, sorting, optimistic locking, and pagination. 
  3. Customize the project with your IDE:
    • Logic Automation using rules: declare spreadsheet-like rules in Python for multi-table derivations and constraints - 40X more concise than code.
    • Use Python and standard libraries (Flask, SQLAlchemy) and debug in your IDE.
  4. Iterate your project:
    • Revise your database design and logic.
    • Integrate with B2B partners and internal systems.


ChatGPT


This process leverages your existing IT infrastructure: your IDE, GitHub, the cloud, your database… open source. Let's see how.

1. AI: Schema Automation

You can use an existing database or create a new one with ChatGPT or your database tools.

Use ChatGPT to generate SQL commands for database creation:

Plain Text
 
Create a sqlite database for customers, orders, items and product

Hints: use autonum keys, allow nulls, Decimal types, foreign keys, no check constraints.

Include a notes field for orders.

Create a few rows of only customer and product data.

Enforce the Check Credit requirement:

Customer.Balance <= CreditLimit
Customer.Balance = Sum(Order.AmountTotal where date shipped is null)
Order.AmountTotal = Sum(Items.Amount)
Items.Amount = Quantity * UnitPrice
Store the Items.UnitPrice as a copy from Product.UnitPrice


Note the hint above.  As we've heard, "AI requires adult supervision."  The hint was required to get the desired SQL.

This creates standard SQL like this. Copy the generated SQL commands into a file, say, sample-ai.sql:

Then, create the database:

 
sqlite3 sample_ai.sqlite < sample_ai.sql


2. API Logic Server: Create

Given a database (whether or not it's created from AI), API Logic Server creates an executable, customizable project with the following single command:

 
$ ApiLogicServer create --project_name=sample_ai --db_url=sqlite:///sample_ai.sqlite


This creates a project you can open with your IDE, such as VSCode (see below). The project is now ready to run; press F5. It reflects the automation provided by the create command:

  • API Automation: a self-serve API ready for UI developers and;
  • App Automation: an Admin app ready for Back Office Data Maintenance and Business User Collaboration. App and API Automation

Let's explore the App and API Automation from the create command.

App Automation

App Automation means that ApiLogicServer create creates a multi-page, multi-table Admin App automatically. This does not consist of hundreds of lines of complex HTML and JavaScript; it's a simple yaml file that's easy to customize.

Order

Ready for business user collaboration,
back-office data maintenance...
in minutes.

API Automation

App Automation means that ApiLogicServer create creates a JSON: API automatically. Your API provides an endpoint for each table, with related data access, pagination, optimistic locking, filtering, and sorting.

It would take days to months to create such an API
using frameworks.

UI App Developers can use the API to create custom apps immediately, using Swagger to design their API call and copying the URI into their JavaScript code. APIs are thus self-serve: no server coding is required. 

Custom App Dev is unblocked: Day 1.

Self-serve


3. Customize

So, we have working software in minutes. It's running, but we really can't deploy it until we have logic and security, which brings us to customization.

Projects are designed for customization, using standards: Python, frameworks (e.g., Flask, SQLAlchemy), and your IDE for code editing and debugging. 

Not only Python code but also Rules.

Logic Automation

Logic Automation means that you can declare spreadsheet-like rules using Python. Such logic maintains database integrity with multi-table derivations, constraints, and security. Rules are 40X more concise than traditional code and can be extended with Python.

Rules are an executable design. Use your IDE (code completion, etc.) to replace 280 lines of code with the five spreadsheet-like rules below. Note they map exactly to our natural language design:


1. Debugging

The screenshot above shows our logic declarations and how we debug them:

  • Execution is paused at a breakpoint in the debugger, where we can examine the state and execute step by step.
  • Note the logging for inserting an Item. Each line represents a rule firing and shows the complete state of the row.

2. Chaining: Multi-Table Transaction Automation

Note that it's a Multi-Table Transaction, as indicated by the log indentation. This is because, like a spreadsheet, rules automatically chain, including across tables.

3. 40X More Concise

The five spreadsheet-like rules represent the same logic as 200 lines of code, shown here. That's a remarkable 40X decrease in the backend half of the system.

4. Automatic Re-use

The logic above, perhaps conceived for Place order, applies automatically to all transactions: deleting an order, changing items, moving an order to a new customer, etc. This reduces code and promotes quality (no missed corner cases).

5. Automatic Optimizations

SQL overhead is minimized by pruning, and by eliminating expensive aggregate queries. These can result in orders of magnitude impact. 

This is because the rule engine is not based on a Rete algorithm but is highly optimized for transaction processing and integrated with the SQLAlchemy ORM (Object Relational Manager).

6. Transparent

Rules are an executable design. Note they map exactly to our natural language design (shown in comments) readable by business users. This complements running screens to facilitate agile collaboration. 

Security Automation

Security Automation means you activate login-access security and declare grants (using Python) to control row access for user roles.  Here, we filter less active accounts for users with the sales role:

 
Grant(  on_entity = models.Customer,
        to_role = Roles.sales,
        filter = lambda : models.Customer.CreditLimit > 3000,
        filter_debug = "CreditLimit > 3000")

 

4. Iterate: Rules + Python

So, we have completed our one-day project.  The working screens and rules facilitate agile collaboration, which leads to agile iterations. 

Automation helps here, too: not only are spreadsheet-like rules 40X more concise, but they meaningfully simplify iterations and maintenance. Let’s explore this with two changes:

Requirement 1: Green Discounts

Plain Text
 
Give a 10% discount for carbon-neutral products for 10 items or more.


Requirement 2: Application Integration

Plain Text
 
Send new Orders to Shipping using a Kafka message.

Enable B2B partners to place orders with a custom API.

 

Revise Data Model

In this example, a schema change was required to add the Product.CarbonNeutral column.  This affects the ORM models, the API, etc. So, we want these updated but retain our customizations. 

This is supported using the ApiLogicServer rebuild-from-database command to update existing projects to a revised schema, preserving customizations.

Iterate Logic: Add Python

Here is our revised logic to apply the discount and send the Kafka message:

Extend API

We can also extend our API for our new B2BOrder endpoint using standard Python and Flask:

Note: Kafka is not activated in this example. To explore a running Tutorial for application integration with running Kafka, click here.

Notes on Iteration

This illustrates some significant aspects of how logic supports iteration.

Maintenance Automation

Along with perhaps documentation, one of the tasks programmers most loathe is maintenance. That’s because it’s not about writing code, but archaeology; deciphering code someone else wrote, just so you can add four or five lines that’ll hopefully be called and function correctly.

Logic Automation changes that with Maintenance Automation, which means:

  • Rules automatically order their execution (and optimizations) based on system-discovered dependencies.
  • Rules are automatically reused for all relevant transactions.

So, to alter logic, you just “drop a new rule in the bucket,” and the system will ensure it’s called in the proper order and re-used over all the relevant Use Cases. 

Extensibility: With Python

In the first case, we needed to do some if/else testing, and it was more convenient to add a dash of Python. While this is pretty simple Python as a 4GL, you have the full power of object-oriented Python and its many libraries.

For example, our extended API leverages Flask and open-source libraries for Kafka messages.

Rebuild: Logic Preserved 

Recall we were able to iterate the schema and use the  ApiLogicServer rebuild-from-database command.  This updates the existing project, preserving customizations. 

5. Deploy

API Logic Server provides scripts to create Docker images from your project.  You can deploy these to the cloud or your local server.

For more information, see here.

Summary


Idea and ChatGPT

In minutes, you've used ChatGPT and API Logic Server to convert an idea into working software. It required only five rules and a few dozen lines of Python. The process is simple:

  • Create the Schema with ChatGPT.

  • Create the Project with ApiLogicServer.

    • A Self-Serve API to unblock UI Developers: Day 1
    • An Admin App for Business User Collaboration: Day 1
  • Customize the project.

    • With Rules: 40X more concise than code.
    • With Python:  for complete flexibility.
  • Iterate the project in your IDE to implement new requirements.

    • Prior customizations are preserved.

It all works with standard tooling: Python, your IDE, and container-based deployment.

You can execute the steps in this article with the detailed tutorial: click here.

API Integrated development environment app Python (language) AI ChatGPT

Published at DZone with permission of Val Huber, DZone MVB. See the original article here.

Opinions expressed by DZone contributors are their own.

Related

  • Unleashing the Power of GPT: A Comprehensive Guide To Implementing OpenAI’s GPT in ReactJS
  • AI Code Intentions
  • Unleashing Conversational Magic: Integrating ChatGPT With React.js and Node.js
  • Building a Dynamic Chat Application: Setting up ChatGPT in FastAPI and Displaying Conversations in ReactJS

Partner Resources


Comments

ABOUT US

  • About DZone
  • Send feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends: