DZone
Thanks for visiting DZone today,
Edit Profile
  • Manage Email Subscriptions
  • How to Post to DZone
  • Article Submission Guidelines
Sign Out View Profile
  • Post an Article
  • Manage My Drafts
Over 2 million developers have joined DZone.
Log In / Join
Refcards Trend Reports
Events Video Library
Refcards
Trend Reports

Events

View Events Video Library

Zones

Culture and Methodologies Agile Career Development Methodologies Team Management
Data Engineering AI/ML Big Data Data Databases IoT
Software Design and Architecture Cloud Architecture Containers Integration Microservices Performance Security
Coding Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks
Culture and Methodologies
Agile Career Development Methodologies Team Management
Data Engineering
AI/ML Big Data Data Databases IoT
Software Design and Architecture
Cloud Architecture Containers Integration Microservices Performance Security
Coding
Frameworks Java JavaScript Languages Tools
Testing, Deployment, and Maintenance
Deployment DevOps and CI/CD Maintenance Monitoring and Observability Testing, Tools, and Frameworks

Enterprise AI Trend Report: Gain insights on ethical AI, MLOps, generative AI, large language models, and much more.

2024 Cloud survey: Share your insights on microservices, containers, K8s, CI/CD, and DevOps (+ enter a $750 raffle!) for our Trend Reports.

PostgreSQL: Learn about the open-source RDBMS' advanced capabilities, core components, common commands and functions, and general DBA tasks.

AI Automation Essentials. Check out the latest Refcard on all things AI automation, including model training, data security, and more.

Related

  • Kafka JDBC Source Connector for Large Data
  • Make Your Integration Seamless By Using Ballerina Client Connectors
  • How to Integrate a Distributed Database With Event Streaming
  • Configuring a Shopify MuleSoft Connector

Trending

  • Long Tests: Saving All App’s Debug Logs and Writing Your Own Logs
  • AI and Rules for Agile Microservices in Minutes
  • Harmonizing AI: Crafting Personalized Song Suggestions
  • C4 PlantUML: Effortless Software Documentation

Mule Aggregator Connector

In this article, we will explore and understand the use of the Mule Aggregator Connector and demonstrate 3 of its core functionalities.

By 
Karan Gupta user avatar
Karan Gupta
·
Jan. 30, 22 · Tutorial
Like (3)
Save
Tweet
Share
7.6K Views

Join the DZone community and get the full member experience.

Join For Free

What is Aggregator Connector?

As the name suggests, it means it Aggregates/Accumulates a set of data. Aggregation can be further achieved in 3 different ways:

  1. Size-Based Aggregator
  2. Group-Based Aggregator
  3. Time-Based Aggregator

Let's start exploring each of these functionalities in detail with a demo.

1. Size-Based Aggregator

This enables you to aggregate the incoming request (entire payload or any specific element) to the size defined in the aggregator configuration.

For example, if you want to bind the incoming request in the batch of 3, then we will set the size limit to 3 in aggregator configuration. Let's see the implementation now.

  • Create a Flow and drag an HTTP Listener and Size-based aggregator connector inside it.
  • In the Size-based aggregator connector there are 2 sections as below:
    • Incremental Aggregation: This basically keeps track of each current incremental value.
    • Aggregation Complete: This section gets triggered once the aggregation condition is satisfied, in this case, the max size. In this, you can either use Flow reference or can use Aggregator Listener for the further execution process.
  • Below is the configuration for the Mule flow.Size-Based Aggregator Flow
    Size-Based Aggregator Flow
    Aggregator Listener Flow
    Aggregator Listener Flow
  • Below is the Connector Configuration.Size-Based Aggregator Configuration
    Size-Based Aggregator Configuration
    Aggregator Listener Configuration
    Aggregator Listener Configuration

Now run the code and send 3 HTTP Requests. In the console, you will see an aggregated output.

Plain Text
 
**Incremental Aggregation Output**

INFO  2022-01-24 14:02:07,202 [[MuleRuntime].uber.08: [aggregatordemo].aggregatordemoFlow.CPU_LITE @2f2eb4b3] [processor: aggregatordemoFlow/processors/0/route/0/processors/0; event: 1d95e200-7cf0-11ec-a0e1-00155df07a06] org.mule.runtime.core.internal.processor.LoggerMessageProcessor: [TypedValue[value: '[B@63d6397f', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}']]
INFO  2022-01-24 14:02:11,755 [[MuleRuntime].uber.08: [aggregatordemo].aggregatordemoFlow.CPU_LITE @2f2eb4b3] [processor: aggregatordemoFlow/processors/0/route/0/processors/0; event: 204c7680-7cf0-11ec-a0e1-00155df07a06] org.mule.runtime.core.internal.processor.LoggerMessageProcessor: [TypedValue[value: '[B@46c24667', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}'], TypedValue[value: '[B@bd58c3c', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}']]
INFO  2022-01-24 14:02:15,460 [[MuleRuntime].uber.08: [aggregatordemo].aggregatordemoFlow.CPU_LITE @2f2eb4b3] [processor: aggregatordemoFlow/processors/0/route/1/processors/0; event: 2281a600-7cf0-11ec-a0e1-00155df07a06] org.mule.runtime.core.internal.processor.LoggerMessageProcessor: [TypedValue[value: '[B@4a986e9', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}'], TypedValue[value: '[B@6326951f', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}'], TypedValue[value: '[B@b79f9dd', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}']]

**Aggregation Complete Output**

INFO  2022-01-24 14:02:15,462 [[MuleRuntime].uber.05: [aggregatordemo].aggregatordemoFlow1.CPU_INTENSIVE @58aef977] [processor: aggregatordemoFlow1/processors/1; event: 1787be10-7cf0-11ec-a0e1-00155df07a06] org.mule.runtime.core.internal.processor.LoggerMessageProcessor: [
  {
    "Text": 1
  },
  {
    "Text": 2
  },
  {
    "Text": 3
  }
]


2. Group-Based Aggregator

This enables you to aggregate the data (entire payload or any specific element) into groups based on the Group id and the batch size defined in the configuration.

For example, if you want to group employees based on their status as active or inactive we can make use of this. Let's see the implementation now.

  • Create a Flow and drag an HTTP Listener and Group-based aggregator connector inside it.
  • Now configure Name, Group id, and Group size in Group-based aggregator connector depending on your requirement. 
  • Eviction Time is the time till it remembers the Group id, the default is 180 secs.
  • The rest of the configuration remains the same as above. Group-Based Aggregator Configuration
    Group-Based Aggregator Configuration

Now run the code and send Employee data with status as Active and Inactive and you can see the output being grouped with respective statuses.

Plain Text
 
**Incremental Aggregation Output**

INFO  2022-01-24 14:50:37,833 [[MuleRuntime].uber.05: [aggregatordemo].aggregatordemoFlow.CPU_LITE @689874a9] [processor: aggregatordemoFlow/processors/0/route/0/processors/0; event: e4742a20-7cf6-11ec-b9da-00155df07a06] org.mule.runtime.core.internal.processor.LoggerMessageProcessor: 
org.mule.runtime.core.internal.message.DefaultMessageBuilder$MessageImplementation
{
  payload=[TypedValue[value: '[B@4e7a5601', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}']]
  mediaType=*/*
  attributes=org.mule.extension.aggregator.api.AggregationAttributes@217e7427
  attributesMediaType=*/*
}
INFO  2022-01-24 14:50:44,767 [[MuleRuntime].uber.05: [aggregatordemo].aggregatordemoFlow.CPU_LITE @689874a9] [processor: aggregatordemoFlow/processors/0/route/0/processors/0; event: e89683a0-7cf6-11ec-b9da-00155df07a06] org.mule.runtime.core.internal.processor.LoggerMessageProcessor: 
org.mule.runtime.core.internal.message.DefaultMessageBuilder$MessageImplementation
{
  payload=[TypedValue[value: '[B@51e94f99', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}'], TypedValue[value: '[B@2e7fcd2d', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}']]
  mediaType=*/*
  attributes=org.mule.extension.aggregator.api.AggregationAttributes@2064cc7e
  attributesMediaType=*/*
}
INFO  2022-01-24 14:50:50,556 [[MuleRuntime].uber.05: [aggregatordemo].aggregatordemoFlow.CPU_LITE @689874a9] [processor: aggregatordemoFlow/processors/0/route/1/processors/0; event: ec09ff80-7cf6-11ec-b9da-00155df07a06] org.mule.runtime.core.internal.processor.LoggerMessageProcessor: 
org.mule.runtime.core.internal.message.DefaultMessageBuilder$MessageImplementation
{
  payload=[TypedValue[value: '[B@4b29977e', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}'], TypedValue[value: '[B@3e61fe9e', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}'], TypedValue[value: '[B@3e104949', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}']]
  mediaType=*/*
  attributes=org.mule.extension.aggregator.api.AggregationAttributes@623f8ee0
  attributesMediaType=*/*
}

**Aggregation Complete Output**

INFO  2022-01-24 14:50:50,561 [[MuleRuntime].uber.03: [aggregatordemo].aggregatordemoFlow1.CPU_INTENSIVE @61e80f72] [processor: aggregatordemoFlow1/processors/1; event: Active] org.mule.runtime.core.internal.processor.LoggerMessageProcessor: [
  {
    "name": "ABC",
    "status": "Active"
  },
  {
    "name": "MNO",
    "status": "Active"
  },
  {
    "name": "XYZ",
    "status": "Active"
  }
]

 

Since we have set eviction time as 180 seconds we cannot send another request with the status Active till 180 seconds gets over. You will receive the below error in the console.

Plain Text
 
ERROR 2022-01-24 14:52:03,275 [[MuleRuntime].uber.05: [aggregatordemo].aggregatordemoFlow.CPU_LITE @689874a9] [processor: aggregatordemoFlow/processors/0; event: 1761bb50-7cf7-11ec-b9da-00155df07a06] org.mule.runtime.core.internal.exception.OnErrorPropagateHandler: 
********************************************************************************
Message               : Trying to aggregate a new element to the group with id: Active ,but it's already complete
Element               : aggregatordemoFlow/processors/0 @ aggregatordemo:aggregatordemo.xml:14 (Group based aggregator)
Element DSL           : <aggregators:group-based-aggregator doc:name="Group based aggregator" doc:id="dee44800-5b56-4f64-bb0a-ec2336df6334" name="groupAggregator" groupId="#[payload.status]" groupSize="3">
<aggregators:incremental-aggregation>
<logger level="INFO" doc:name="Logger" doc:id="f05a8637-8422-4764-b58b-f81e2b6455ed"></logger>
</aggregators:incremental-aggregation>
<aggregators:aggregation-complete>
<logger level="INFO" doc:name="Logger" doc:id="b99e2e44-21ff-4d83-a00f-4c6a94533b4f"></logger>
</aggregators:aggregation-complete>
</aggregators:group-based-aggregator>
Error type            : AGGREGATORS:GROUP_COMPLETED
FlowStack             : at aggregatordemoFlow(aggregatordemoFlow/processors/0 @ aggregatordemo:aggregatordemo.xml:14 (Group based aggregator))

  (set debug level logging or '-Dmule.verbose.exceptions=true' for everything)
********************************************************************************


3. Time-Based Aggregator

This enables you to aggregate the request (entire payload or any specific element) for the time period defined in the aggregator configuration.

For example, if you want to bind all the incoming requests for a time period of 30 sec you need to set this time period in a Time-based aggregator configuration. You can also restrict the size by defining the Max size limit. Let's see the implementation now.

  • Create a Flow and drag an HTTP Listener and Time-based aggregator connector inside it.
  • Now configure Time Period and Max Size in Time-based aggregator connector depending on your requirement.
  • The rest of the configuration remains the same as above. Time-Based Aggregator Configuration
    Time-Based Aggregator Configuration

Now run the code and send 2-3 requests within the time specified and then you can see the aggregated response in the output.

Plain Text
 
INFO  2022-01-24 15:28:20,908 [[MuleRuntime].uber.03: [aggregatordemo].aggregatordemoFlow.CPU_LITE @61cf581] [processor: aggregatordemoFlow/processors/0/route/0/processors/0; event: 294037c0-7cfc-11ec-91f8-00155df07a06] org.mule.runtime.core.internal.processor.LoggerMessageProcessor: [TypedValue[value: '[B@502dd49e', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}']]
INFO  2022-01-24 15:28:21,873 [[MuleRuntime].uber.03: [aggregatordemo].aggregatordemoFlow.CPU_LITE @61cf581] [processor: aggregatordemoFlow/processors/0/route/0/processors/0; event: 29ed8ec0-7cfc-11ec-91f8-00155df07a06] org.mule.runtime.core.internal.processor.LoggerMessageProcessor: [TypedValue[value: '[B@7d50b4f4', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}'], TypedValue[value: '[B@42282847', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}']]
INFO  2022-01-24 15:28:22,859 [[MuleRuntime].uber.03: [aggregatordemo].aggregatordemoFlow.CPU_LITE @61cf581] [processor: aggregatordemoFlow/processors/0/route/0/processors/0; event: 2a83db50-7cfc-11ec-91f8-00155df07a06] org.mule.runtime.core.internal.processor.LoggerMessageProcessor: [TypedValue[value: '[B@56bd5e36', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}'], TypedValue[value: '[B@c2bfde6', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}'], TypedValue[value: '[B@4e655dbd', dataType: 'SimpleDataType{type=[B, mimeType='application/json; charset=UTF-8'}']]
INFO  2022-01-24 15:28:40,878 [[MuleRuntime].uber.05: [aggregatordemo].aggregatordemoFlow1.CPU_INTENSIVE @31dd2e47] [processor: aggregatordemoFlow1/processors/1; event: 294dcc50-7cfc-11ec-91f8-00155df07a06] org.mule.runtime.core.internal.processor.LoggerMessageProcessor: [
  {
    "Text": 1
  },
  {
    "Text": 1
  },
  {
    "Text": 1
  }
]


Connector (mathematics)

Opinions expressed by DZone contributors are their own.

Related

  • Kafka JDBC Source Connector for Large Data
  • Make Your Integration Seamless By Using Ballerina Client Connectors
  • How to Integrate a Distributed Database With Event Streaming
  • Configuring a Shopify MuleSoft Connector

Partner Resources


Comments

ABOUT US

  • About DZone
  • Send feedback
  • Community research
  • Sitemap

ADVERTISE

  • Advertise with DZone

CONTRIBUTE ON DZONE

  • Article Submission Guidelines
  • Become a Contributor
  • Core Program
  • Visit the Writers' Zone

LEGAL

  • Terms of Service
  • Privacy Policy

CONTACT US

  • 3343 Perimeter Hill Drive
  • Suite 100
  • Nashville, TN 37211
  • support@dzone.com

Let's be friends: